Exploring Step‐by‐Step Assembly of Nanoparticle:Cytochrome Biohybrid Photoanodes
نویسندگان
چکیده
Coupling light-harvesting semiconducting nanoparticles (NPs) with redox enzymes has been shown to create artificial photosynthetic systems that hold promise for the synthesis of solar fuels. High quantum yields require efficient electron transfer from the nanoparticle to the redox protein, a property that can be difficult to control. Here, we have compared binding and electron transfer between dye-sensitized TiO2 nanocrystals or CdS quantum dots and two decaheme cytochromes on photoanodes. The effect of NP surface chemistry was assessed by preparing NPs capped with amine or carboxylic acid functionalities. For the TiO2 nanocrystals, binding to the cytochromes was optimal when capped with a carboxylic acid ligand, whereas for the CdS QDs, better adhesion was observed for amine capped ligand shells. When using TiO2 nanocrystals, dye-sensitized with a phosphonated bipyridine Ru(II) dye, photocurrents are observed that are dependent on the redox state of the decaheme, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the decaheme conduit. In contrast, when CdS NPs are used, photocurrents are not dependent on the redox state of the decaheme, consistent with a model in which electron transfer from CdS to the photoanode bypasses the decaheme protein. These results illustrate that although the organic shell of NPs nanoparticles crucially affects coupling with proteinaceous material, the coupling can be difficult to predict or engineer.
منابع مشابه
Patterned biocatalytic films via one-step self-assembly.
Patterned porous films containing enzymes have been facilely prepared via a one-step breath figure process, which is based on the self-assembly of horseradish peroxidase nanoparticles that show good resistance to organic solvents. The patterned biohybrid films possess robust catalytic activity.
متن کاملFuzzy multi-objective assembly line balancing problem: Fuzzy mathematical programming approach
Design of assembly line is done in order to more coordinate a collection of some consecutive work stations for the aim of obtaining more productivity from the work stations and workers. The stations are arranged in a way to have a continuous and constant material flow. In this paper a multi-objective formulation for assembly line balancing is introduced. As a solution approach a two-step approa...
متن کاملExploring and Exploiting Quantum-Dot Cellular Automata
The Full Adders (FAs) constitute the essential elements of digital systems, in a sense that they affect the circuit parameters of such systems. With respect to the MOSFET restrictions, its replacement by new devices and technologies is inevitable. QCA is one of the accomplishments in nanotechnology nominated as the candidate for MOSFET replacement. In this article 4 new layouts are presente...
متن کاملExcellent anti-fogging dye-sensitized solar cells based on superhydrophilic nanoparticle coatings.
We present a facile method for producing anti-fogging (AF) and anti-reflection (AR) coating functionalized photoanodes via one-step SiO2 nanoparticle coating for high performance solid state dye-sensitized solar cells (ssDSSCs). The AF and AR coating functionalized photoanodes are prepared by spin-coating of partially aggregated SiO2 colloidal solution. Poly((1-(4-ethenylphenyl)methyl)-3-butyl-...
متن کاملMorphology-controllable 1D-3D nanostructured TiO2 bilayer photoanodes for dye-sensitized solar cells.
Morphology-controlled bilayer TiO(2) nanostructures consisting of one-dimensional (1D) nanowire bottom arrays and a three-dimensional (3D) dendritic microsphere top layer were synthesized via a one-step hydrothermal method. These novel 1D-3D bilayer photoanodes demonstrated the highest energy conversion efficiency of 7.2% for rutile TiO(2) dye-sensitized solar cells to date, with TiCl(4) post-t...
متن کامل